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Abstract

Several algorithms for automatic frequency alignment and quantitation of single resonances in multiple magnetic resonance

(MR) spectra are investigated. First, a careful comparison between the complex principal component analysis (PCA) and the Hankel

total least squares-based methods for quantifying the resonances in the spectral sets of magnetic resonance spectroscopy imaging

(MRSI) spectra is presented. Afterward, we discuss a method based on complex PCA plus linear regression and a method based on

cross correlation of the magnitude spectra for correcting frequency shifts of resonances in sets of MR spectra. Their advantages and

limitations are demonstrated on simulated MR data sets as well as on an in vivo MRSI data set of the human brain.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In vivo magnetic resonance spectroscopy (MRS) ex-
aminations may result in large sets of spectra, e.g.,

spectra from time series [1] or from MRS imaging

(MRSI) experiments [2,3]. Separate quantitation of each

spectrum is cumbersome, while automated quantitation

of the complete data set may pose serious problems.

Moreover, quantitation of MRS data in general, and

MRSI data in particular, yielding information about

metabolite concentrations, is usually hampered by low
signal-to-noise ratios. Van Huffel et al. [4] applied the

total least squares method to MRS data quantitation,

assuming that the data were modeled as a sum of ex-

ponentially damped sinusoids. Their algorithm, called

Hankel total least squares (HTLS), was shown to im-

prove the accuracy of all MRS parameter estimates as

compared to HSVD. Recently, HTLS was generalized

[5] to the quantitation of sets of MRS data as in
MRSI, resulting in the HTLSstack and HTLSsum

algorithms.

As a widely used statistical technique, principal

component analysis (PCA) was introduced in MRS data

quantitation by Stoyanova et al. [6]. PCA is able to

quantify simultaneously all spectra in one data set pro-

vided they are single resonances of the same lineshape.

As such, the quantitation result is improved [6] since
PCA exploits the common information between all

spectra to suppress the effect of noise. In [6] only the real

part of the MRS data is considered and transformed to

the frequency domain. An interval surrounding the

resonance of interest is selected and the points within

this interval are stored row by row in a matrix, to which

PCA is applied. To improve the accuracy and eliminate

the influence of the phase difference, Elliot et al. [7]
performed PCA on complex MRS data using a complex

SVD. Mathematically, PCA decomposes the data set in

order to extract the basic features, called principal
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components (PCs). It has been shown that under some
conditions PCA can successfully extract quantitative

metabolite information from data sets without any prior

knowledge about the lineshape [6–9].

The PCA methods discussed above only apply if

corresponding single resonances in all spectra have the

same frequency, lineshape (and phase in case of real-

valued data sets). However, Brown and Stoyanova [9]

developed a PCA-based method for aligning the spectra
in frequency and phase using the real-valued part of the

data set. This method was further improved in [12] by

combining PCA with linear regression. In a broader

sense, frequency-shift alignment is always needed as a

preprocessing technique for in vivo applications in

which frequency shifts are introduced due to instru-

mental imperfections, field inhomogeneity, patient

movement, etc. Very recently, Stoyanova and Brown
[13,14] further improved and generalized these methods

to correct simultaneously for amplitude variations, as

well as frequency, phase, and linewidth variations. In

essence, they apply the same linear regression approach

as presented in [12] but extend it with linewidth cor-

rections and use, instead of the original spectral data

matrix, a rank-four approximation.

This paper analyzes the advantages and limitations of
the use of complex PCA for quantitation of single res-

onances, as well as for frequency alignment. Here, the

entire complex-valued data set (real and imaginary part)

is used, in contrast to [6,9,12–14] where only the real

part is considered. As already shown in [7,10] for

quantitation and proven here for frequency alignment,

working with the entire complex-valued data set has the

large advantage that the spectra no longer need to be
aligned in-phase for quantifying the areas under each

resonance using PCA. First of all, cPCA is compared via

an extensive Monte Carlo simulation study with HTLS,

HTLSsum, and HTLSstack. Next, we extend the fre-

quency alignment procedures described in [9,12] to the

complex domain by combining cPCA and linear re-

gression, and we also discuss further improvements. The

performance of this newly developed method, called
cPCA-LR(f), is compared in detail to the existing

methods in the literature, in particular its real-valued

counterpart (rPCA-LR(f,p)) and cross correlation

(cCross(f)). It should be noticed that so far, no extensive

evaluation of performances of PCA-based methods

compared to the other state-of-the-art methods has been

published. These are the main contributions of this

paper.
The structure of this paper is as follows: we start with

the theory section, where the algorithms for quantitation

are discussed. Thereafter, we present frequency align-

ment methods. In the next section, the advantages and

limitations of all these methods are demonstrated on

simulated MR data sets of single resonances and an in

vivo MRSI data set of the human brain.

2. Theory

2.1. MRS data model function

It is assumed that, basically, MRS data can be

modeled as a sum of exponentially damped complex-

valued sinusoids (Lorentzians),

yn ¼ �yyn þ en ¼
XK
k¼1

akej/keð�dkþj2pfkÞtn þ en; ð1Þ

where n ¼ 0; 1; . . . ;N � 1; yn is the nth measured data

point of an MRS signal; �yyn represents the nth value of

the model function, j ¼
ffiffiffiffiffiffiffi
�1

p
; ak is the amplitude, /k the

phase, dk the damping factor, and fk the frequency of the

kth sinusoid k ¼ 1; 2; . . . ;K; K is the number of the si-

nusoids: tn ¼ nDt þ t0 with Dt the sampling interval and
t0 the time between the effective time origin and the first

data point to be included in the analysis; and en is

complex white Gaussian noise. The amplitude ak is di-

rectly related to the concentration of a certain metabo-

lite and should be estimated as precisely as possible.

Alternatively, the data can be modeled as a sum of

Gaussians,

yn ¼ �yyn þ en ¼
XK
k¼1

akej/keð�gk tnþj2pfkÞtn þ en; ð2Þ

where gk is the damping factor and the other parameters

are as defined above.

2.2. Hankel total least squares

Arranging the data points yn, n ¼ 0; 1; . . . ;N � 1 of

one MRS signal y in a Hankel matrix H of dimensions

L�M , LPK, M PK, N ¼ LþM � 1, yields:

H ¼

y0 y1 . . . yM�1

y1 y2 . . . yM
..
. ..

. ..
. ..

.

yL�1 yL�2 . . . yN�1

2
6664

3
7775: ð3Þ

Computing the SVD of the Hankel matrix H, we obtain

HL�M ¼ UL�LRL�MV H
M�M ; ð4Þ

where R ¼ diagðr1; r2; . . . ; rqÞ, r1 P r2 P � � � P rq, q ¼
minðM ; LÞ, and the superscript H denotes the hermitian

conjugate. According to [4], H should be chosen as

square as possible in order to get the best parameter

accuracy.

Truncate H to a matrix HK of rank K (K is the esti-

mated number of signal poles):

HK ¼ UKRKV H
K : ð5Þ

UK and VK are the first K columns of U and V, respec-
tively. RK is the K � K upper-left submatrix of R.
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Now compute the total least squares (TLS) [15] so-
lution E of the following (incompatible) set:

V ðtÞ
K EH 	 V ðbÞ

K : ð6Þ
V ðbÞ
K and V ðtÞ

K are derived from VK by omitting its first and

last row, respectively. The K eigenvalues of E yield the

signal pole estimates:

ẑzk ¼ eð�d̂dkþj2pf̂fkÞDt k ¼ 1; . . . ;K: ð7Þ
Filling in the estimated frequencies f̂fk and damping

factors d̂dk into the model Eq. (1) yields the set:

yn 	
XK
k¼1

ckeð�d̂dkþj2pf̂fkÞtn n ¼ 0; 1; . . . ;N � 1:

From its least squares solution ĉck ¼ âakej/̂/k, we find âak
and /̂/k the estimated amplitudes and phases.

A more detailed description of the HTLS algorithm

and underlying principles is given in [15].

2.3. HTLSsum and HTLSstack

Two extensions of the HTLS algorithms quantifying

simultaneously sets of MRS signals are presented now.

A thorough discussion of these algorithms can be found

in [5].

Suppose we have P MRS signals y1; y2; . . . ; yP of N

data points each. Let

�yy ¼ y1 þ y2 þ � � � þ yP:
Now we can apply the HTLS algorithm to the sum �yy of

these signals to first obtain the signal poles and after-
ward calculate the corresponding amplitudes and phases

for each signal separately. How to assign the signal poles

to corresponding signals is not trivial. A procedure is

outlined in [5]. This algorithm is called HTLSsum.

The HTLSstack algorithm is as follows:

Arrange N data points of each MRS signal yp into a

Hankel matrix as in Eq. (3):

Hp ¼

y0p y1p . . . yðM�1Þp
y1p y2p . . . yMp

..

. ..
. ..

. ..
.

yðL�1Þp yðL�2Þp . . . yðN�1Þp

2
6664

3
7775; ð8Þ

where p ¼ 1; 2; . . . ; P . Vertically stack these P Hankel

matrices to obtain:

Hstack ¼

H1

H2

..

.

Hp

2
6664

3
7775:

Equations (4) and (6) can be solved using Hstack in order

to obtain frequencies and damping factors for all MRS
signals together. Note that here signal poles need to be

assigned to corresponding signals. The same procedure

is used in HTLSsum [5].

2.4. Principal component analysis

PCA is usually performed by means of an eigenvalue

decomposition. Here we use the complex SVD. Al-

though PCA can be applied to the time-domain data,

the corresponding MR spectra are generally considered

and are obtained from the original time-domain signal

in each voxel by applying the discrete Fourier trans-

formation (DFT). Assume P voxels and denote the MR
spectrum in the ith voxel by yi. Arrange the P spectra

y1; y2; . . . ; yP as rows in a matrix D and compute the

complex SVD,

DP�N ¼

yT1
yT2

..

.

yTP

2
6664

3
7775 ¼ ðUP�PRP�NÞV H

N�N ¼ SP�NV H
N�N ; ð9Þ

where R ¼ diagðr1; r2; . . . ; rqÞ, q ¼ minðP ;NÞ. The col-

umns of V contain the basic lineshapes of the signals,

called PCs. The elements in SP�N ¼ UP�PRP�N are called

the scores of each principal component.

Now, suppose our set of P MRS signals is composed

of a single resonance, which means that the matrix D has

rank one. In this case, only r1 6¼ 0, r2 ¼ r3 ¼ � � � ¼
rq ¼ 0. Now the score matrix S contains only one
column

S1 ¼ ½ s1 s2 � � � sP �T;
which is different from zero. The first PC, i.e., the first

column v1 of V, represents the basic lineshape, which, in

our case, contains only one peak.
When noise is present, r2; r3; . . . ; rq are not equal to

zero. But they are normally quite small compared to r1.

Each signal yp in the set can be expressed in the fol-

lowing way:

yp ¼ spv1 p ¼ 1; . . . ; P : ð10Þ

Using frequency-domain data, obtained by applying the

DFT to the rows of MRS signals, we need to normalize

v1 so that it has unit area. Denoting the normalized PC

by ~vv1, this implies:

XN
i¼1

~vvi1 ¼ 1: ð11Þ

In this case, Eqs. (9) and (10) become (in matrix nota-
tion)

D ¼ ~SS1~vv
H
1 ¼ S1

XN
i¼1

vi1

 !
vH1PN
i¼1 vi1

: ð12Þ

The magnitude values of the normalized scores
~SS1 ¼ S1

PN
i¼1 vi1 then represent the areas under the

resonance in each spectrum, from which the corre-
sponding metabolite concentrations can be obtained.

This algorithm is called cPCA, where ‘‘c’’ represents

complex.
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Using the properties of the DFT, it is easy to prove
that PCA performed in the frequency domain is equiv-

alent to its counterpart in the time domain except for the

normalization, which agrees with our experimental

results.

Using the original time-domain data as rows in the

matrix D, the first PC v1 needs to be normalized in such

a way that it represents a unit amplitude signal. To

normalize v1, we need to divide v1 by its first element v11

so that Eq. (12) becomes (in matrix notation)

D ¼ ~SS1~vv
H
1 ¼ ðS1v11Þ

vH1
v11

: ð13Þ

The normalized scores ~SS1 ¼ S1v11 then represent the
amplitudes of the original signals, from which the cor-

responding metabolite concentrations can be obtained.

Stoyanova and Brown applied PCA to quantify a

spectral data set which contains only real parts of

spectra. For a detailed presentation of Stoyanova et al.�s
method, we refer to [6]. This method is called rPCA

since it is only applied to the real part of the spectrum.

Elliott et al. proved in their paper [7] that applying PCA
to the whole complex spectrum can increase the accu-

racy of resonance area estimation by
ffiffiffi
2

p
.

Quantitation of MRS signals containing more than

one resonance using PCA is much more complex. Since

PCA does not enable automated quantitation of each

single resonance separately (each PC always contains a

mixture of both resonances), we need to filter out each

resonance before applying PCA, thereby introducing a
bias. The best results with minimal bias are obtained

using a maximum phase time domain Finite Impulse

Response (FIR) filter [11]. More details are given in

[8,10].

2.5. Frequency-shift alignment using complex PCA

The PCA method only works well for data sets con-
sisting of single resonant peaks of constant shape but

variable amplitude. However, in reality, due to fluctua-

tions in instrumental parameters and other experimental

variations, the resonances in an in vivo MRS time series

or MRSI experiment are always subject to frequency

shifts, phase misadjustment, and lineshape distortions.

Assume a set of single resonances SðxÞ subject to fre-

quency shifts Dx only. This can mathematically be de-
scribed as

SkðxÞ ¼ Akf ðxÞ ¼ Akf ðx0 þ DxkÞ; ð14Þ
where SkðxÞ is the kth spectrum and function of x, Ak is

the complex amplitude of the kth spectrum, f ðxÞ is the

lineshape function, and Dxk represents the frequency

shift of the kth spectrum.
We can no longer directly apply PCA to quantify the

spectra since now the signal-related variance is not only

distributed along the direction of the first PC but also

along the direction of the second and the third PC, etc.

Suppose that the frequency shift is so small that we
can expand f ðxÞ in a Taylor series:

SkðxÞ ¼ Ak f ðx0Þ
(

þ of
ox x0

Dxk

 þ 1

2

o2f
ox2


x0

Dx2
k þ � � �

)
:

If Dxk is small enough, we can neglect the second and

higher order terms:

SkðxÞ 	 Ak f ðx0Þ
�

þ of
ox x0

Dxk

 �
: ð15Þ

We can also apply PCA to the same data set to obtain:

SkðxÞ ¼ s1k � v1 þ s2k � v2 þ � � � :
The first PC v1 somehow represents the basic lineshape

f ðx0Þ in the data set and v1 	 af ðx0Þ, where a is an

arbitrary positive real number. Therefore we can ap-

proximate of
ox jx0

by using the derivative of the first PC,
v01 	 a of

ox jx0
, which is calculated here via numerical dif-

ferentiation. By applying linear regression (LR), each

spectrum SkðxÞ is approximated by a linear combination

of v1 and v01:

SkðxÞ 	 c1 � v1 þ c2 � v01: ð16Þ
Equating the coefficient ratios of the expressions [15]

and [16] yields the shift:

c2

c1

¼ aAkDxk

aAk
¼ Dxk:

Since the resonances are only subject to frequency shifts,

Dxk should be real. However, in practice, other distor-

tions and the approximations made can make the shift

complex, in which case the real part of Dxk should be

taken. We then transform SkðxÞ to the time domain,
correct the frequency by multiplying the nth point by

e�jDxk2ptn , and retransform back to the frequency

domain.

The above described algorithm, denoted by cPCA-

LR(f), where ‘‘c’’ represents complex and ‘‘LR’’ rep-

resents linear regression, is applied iteratively to the

data until frequency shifts become negligible compared

to the linewidth. Now the signal-related variance
should mainly lie along the direction of the first

PC.

Brown and Stoyanova [9] applied PCA to correct

frequency and phase shifts in a data set using only the

real part of the spectra. Their basic assumption

is that the frequency shift and phase shift are small,

i.e., <45� in-phase and less than one linewidth in fre-

quency, as investigated in [12]. This algorithm, denoted
here by rPCA(f), was further improved by Witjes et al.

[12].

Witjes et al. [12] showed in their paper that their al-

gorithm, denoted rPCA-LR(f,p), was more accurate and

robust than rPCA(f). They also demonstrated that the

use of high order terms in the Taylor expansion can

improve the performance of the algorithm.
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cPCA-LR(f) can also be further improved by adding
higher order terms in the Taylor expansion, for example,

by adding the second-order derivative into the linear

regression equation

SkðxÞ 	 c1 � v1 þ c2 � v01 þ c3 � v001; ð17Þ
where v001 ¼ o2f

ox2 jx0
is approximated by using numerical

differentiation of v01. This algorithm is called cPCA2-

LR(f).

2.6. Numerical differentiation of PC

In their PCA research, Brown and Stoyanova [9] and

Witjes et al. [12] just used first-order finite differences to

approximate the derivative of the first PC. Given a set of

grid points xi with xiþ1 � xi ¼ h and corresponding

first PC values v(xi), the derivative can be approximated

by:

v0ðxiÞ 	
vðxiþ1Þ � vðxiÞ

h
: ð18Þ

There are more accurate ways to calculate the deriva-

tives [16]. For instance, higher order finite differences

such as the fourth-order finite differences yield better

approximations:

v0ðxiÞ 	
1

h

�
� 1

12
vðxi�2Þ þ

2

3
vðxi�1Þ �

2

3
vðxiþ1Þ

þ 1

12
vðxiþ2Þ

�
: ð19Þ

Unless stated otherwise first-order finite differences

are used in cPCA-LR(f) in order to allow a fair com-

parison with the PCA methods of [9,12].

2.7. Cross correlation

Cross correlation is a well-known tool for measur-
ing similarity between two different data sets. It can

also be used to find the frequency-shift corrections of

a given data set. This method, denoted here by

cCross(f), is used for aligning spectra in frequency as

follows:

1. Calculate the magnitude spectrum of each complex

MRS spectrum.

2. Compute the cross correlation between the first spec-
trum and each remaining spectrum in the data set.

The maximal value points out the frequency shift to

be applied to each spectrum.

3. Apply the frequency shifts to the original data set (as

described in Section 2.3).

Unlike PCA-based methods, which are limited to small

frequency shifts because of the first-order Taylor ex-

pansion, cross correlation is more robust in the presence
of large frequency shifts and should be used prior to

PCA-based methods for frequency shift correction, as

illustrated in the next section.

3. Simulation results

All the experiments are performed on a Sun Ultra 5

workstation using MATLAB Version 5.3.

3.1. Quantitation of MRS data sets with one single

Lorentzian line

Simulation procedure. We generate a complex signal
of 128 data points composed of one exponentially

damped sinusoid (frequency, 260 Hz; damping factor,

100 Hz (or linewidth 31 Hz); amplitude, 100 arbitrary

units (a.u.); sampling frequency fs ¼ 1=Dt ¼ 3003 Hz;

phase, 0�), hereafter called the basic Lorentzian signal.

Data sets of P duplicates of the basic Lorentzian are

generated and Gaussian distributed white noise (mean 0

and variance r2
v) is added to both real and imaginary

parts, after which the resulting FIDS are transformed to

the frequency domain. The signal-to-noise ratio (SNR)

is expressed in decibels and defined as

SNR ¼ 20 log10

Affiffiffi
2

p
rv

;

where A is the amplitude (resonance area). Amplitudes
are estimated using cPCA, HTLS, HTLSstack, and

HTLSsum. The whole experiment is repeated 500 times

in order to compute the sample relative root mean

squared error (rrmse) as follows:

rrmseðsÞ ¼ 1

Atrue

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

500P

X500

i¼1

XP
j¼1

ðAijðsÞ � AtrueÞ2

vuut ;

where s is the considered method, Atrue is the true am-
plitude, P is the number of spectra per set, and Aij is the

estimated amplitude of the jth spectrum during the ith

repetition of the experiment.

Fig. 1. rrmse versus SNR. Simulated set contains 100 identical single

Lorentzians.
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In the first two plots, the whole simulation procedure,

described above, is repeated for increasing noise vari-

ances r2
v, ranging from 552 to 102 and the sample rrmse

is plotted versus the SNR. One hundred spectra per data
set (P ¼ 100) are considered in Fig. 1 and only 10

spectra per data set (P ¼ 10) in Fig. 2. Both figures

clearly show the advantages of quantifying all spectra in

a data set simultaneously. Indeed, HTLS, which quan-

tifies all spectra separately, has the worst performance.

HTLSstack and HTLSsum have comparable perfor-

mances and are better than cPCA. While differences in

rrmse are at most 2% at P ¼ 100, these differences rise
above 8% as the number of spectra per data set de-

creases to 10 (rrmse(cPCA) is 22.5% compared to a

rrmse (HTLSstack) of 14% at the lowest SNR). Even

HTLS outperforms cPCA as the SNR > 4 dB, which

clearly proves that additional knowledge of the correct

lineshape, as used by the HTLS-based methods, is im-
portant at low P for guaranteeing a low quantitation

error. We also notice the influence of the number of

spectra in the data set for cPCA.

In Fig. 3, the same simulation procedure is repeated

for increasing number of spectra (P ¼ 5, 10, 50, 100,

200) at SNR 30 dB (A ¼ 100 and rv ¼ 2 for each spec-

trum). It is interesting to notice that the more spectra the

data set has, the better cPCA performs. This property
makes cPCA a good candidate for quantifying large

MRS data sets.

Similar conclusions hold when repeating the simula-

tion procedure on data sets containing spectra with

varying amplitudes, as shown in [8,10]. In this case,

quantitation of the low SNR spectra benefits from the

information provided by the high SNR spectra.

3.2. Quantitation of MRS data sets with one single

Gaussian line

Although HTLS-based algorithms are primarily de-

signed to quantify Lorentzians, they can also be applied

for quantifying any arbitrary lineshape since each arbi-

trary lineshape can always be approximated by a num-

ber of Lorentzians. Assume J Lorentzians are used, with
corresponding signal poles z1; z2; . . . ; zJ and amplitudes

c1p; . . . ; cJp; then the area ap under the corresponding

lineshape of the pth signal is obtained by linearly com-

bining the amplitudes as [1]

ap ¼
XJ
i¼1

aip cos /ip; ð20Þ

where cip ¼ aipej/ip . This computational procedure is il-

lustrated for a Gaussian lineshape. We approximate the
Gaussian lineshape by up to 5 Lorentzians lying in its

frequency range; i.e., K is set to 5 in Eq. (1) implying

that J 6 5. At high SNR the five signal poles computed

by the HTLS-based methods fall within this range; i.e.,

K ¼ J ¼ 5. However, with decreasing SNR noise peaks

are fitted too, resulting in a decrease of J ðJ < KÞ, as

shown in our experiments.

Simulation procedure. The same simulation procedure
of the previous section is considered here for a basic

Gaussian having the same sampling frequency, number

of data points, frequency, amplitude, and phase as the

basic Lorentzian. Only the damping factor differs and is

set to 1000Hz2. The HTLS-based methods approximate

this resonance by a linear combination of several Lo-

rentzians (e.g., 5, as chosen in Figs. 4 and 5).

These plots show the rrmse versus the SNR for the
same noise variances r2

v, as chosen in Figs. 1 and 2. Fig.

4 presents the results for 100 spectra per data set

ðP ¼ 100Þ, while Fig. 5 considers only 10 spectra per set

ðP ¼ 10Þ. Both figures show the advantage of using

cPCA for a Gaussian lineshape. Without any prior

knowledge about the model function. HTLS-based

Fig. 2. rrmse versus SNR. Simulated set contains 10 identical single

Lorentzians.

Fig. 3. rrmse versus number of spectra in data set. SNR ¼ 30 dB for

each spectrum.
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algorithms do not perform as well as cPCA. This su-

periority in performance of cPCA clearly decreases for

smaller data sets ðP < 20Þ, as shown in Fig. 5, and even

vanishes at high SNR (>18 dB), as shown in [8,10],

where HTLSsum and HTLSstack may exhibit similar to

slightly better performances.

HTLS exhibits the worst performance while HTLS-

stack and HTLSsum show comparable results (although
at low SNR and small P HTLSstack is slightly worse),

indicating again that quantitation improves if all spectra

are processed simultaneously. At high SNR each

Gaussian is fitted by five Lorentzians ðJ ¼ 5Þ but, as

SNR decreases, the Gaussian is more likely fitted by

fewer Lorentzians ðJ < 5Þ because the HTLS methods

start to fit noise peaks as well. It is observed that J de-

creases to two at the lowest SNR (<4 dB), implying that

only two (out of five) computed Lorentzians fall within
the frequency range of the Gaussian. Similar conclu-

sions hold when repeating the experiments on data sets

with varying amplitudes [8,10].

3.3. Frequency alignment

We compare Witjes et al.�s [12] real-valued PCA

method plus linear regression, abbreviated as rPCA-
LR(f,p), complex PCA plus linear regression (cPCA-

LR(f) and cPCA2-LR(f)) and cross correlation

(cCross(f)) on simulated large spectral data sets of single

resonances.

Simulation procedure. To enable a fair comparison,

the same simulation example considered in [12] is

taken here. A set of 100 single Lorentzian resonances

ðP ¼ 100Þ with equal amplitude A, each containing 512
data points ðN ¼ 512Þ and centered at position 256 with

linewidth s ¼ 30 data points, is generated. Uniformly

distributed phases (between )90� and 90�) and fre-

quency shifts (�Dx data points), as well as white

Gaussian noise to both real and imaginary parts (mean 0

and variance r2
v ¼ 1), are added to each resonance of the

data set. Amplitudes are estimated after frequency

alignment using rPCA-LR(f,p), cPCA-LR(f), and
cCross(f). The entire experiment is repeated 500 times in

order to compute the sample rrmse of the amplitude A.

3.3.1. Comparison between real PCA-based versus com-

plex PCA-based frequency shift alignment algorithms

In Fig. 6 the frequency shift Dx is uniformly dis-

tributed between plus or minus half the linewidth

ðDx ¼ �15 data points). The simulation procedure is
repeated for varying amplitudes and unit noise variance.

The sample rrmse is plotted versus the resulting SNR,

showing that cPCA-LR(f) is better than rPCA-LR(f,p),

which is unstable due to the large phase shift.Fig. 5. rrmse versus SNR. Simulated set contains 10 identical single

Gaussians.

Fig. 6. rrmse of amplitude estimation versus SNR.

Fig. 4. rrmse versus SNR. Simulated set contains 100 identical single

Gaussians.
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In Fig. 7, the amplitude A is set to 50 and rv ¼ 1 but

the frequency shifts Dx are varied uniformly from 0 up

to 10 times the linewidth (300 data points). The sample

rrmse is plotted versus these frequency shifts. At large
frequency shifts, it is obvious that rPCA-LR(f,p) as well

as cPCA-LR(f) fail but rPCA-LR(f,p) performs clearly

worse than cPCA-LR(f) at all frequency shifts.

3.3.2. Comparison between PCA-based algorithms and

cross correlation

The advantages of PCA-related frequency alignment

methods are based on processing the whole data set si-

multaneously, which can be described as using the

common (global) information in the data set. On the

other hand, cross correlation can only find frequency

shifts one by one, where the accuracy mainly depends on

the SNR of each individual spectrum (local informa-
tion).

In Fig. 6, the cross-correlation algorithm demon-

strates the lowest relative rrmse because the frequency

shifts are fairly large, although the differences with

cPCA-LR(f) are (almost) negligible. In Fig. 7, the

performance of cross correlation almost remains the

same no matter how large the frequency shift is,

demonstrating the robustness of the method. Also
observe that cPCA-LR(f) performs worse than

cCross(f) for large frequency shifts (>2 times the line-

width).

We now consider again the same simulated data set,

as described in the beginning of this section (Dx ¼ �15

data points) but only include 50 resonances (P ¼ 50)

and increase the Gaussian noise variance r2
v to 25. The

amplitudes of the first 25 resonances are set to 100 and
the remaining ones are set to 1000. cCross(f) takes the

Fig. 7. Frequency Shift of the horizontal axis by Frequency Shift (in

data points).

Fig. 8. Comparison in rrmse of 50 amplitudes, as estimated by cPCA-LR(f) and cCross(f). Amplitudes of the first 25 resonances are set to 100 and the

remaining ones are set to 1000. r2
v ¼ 25.
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first resonance, which has an amplitude of 100, as its

reference.

Fig. 8 and Table 1 compare the performance of

cCross(f) and cPCA-LR(f) in rrmse and clearly show

that cPCA-LR(f) yields better amplitude estimates than

cCross(f).

The reason is twofold. On the one hand, it is due to

the advantage of using global information. On the other
hand, it is due to the choice of the reference for

cCross(f). We have selected the worst possible choice for

the reference spectrum to demonstrate the importance of

choosing the reference for cCross(f). In applications, one

should always choose the resonance of highest SNR as a

reference. We select now another reference for the cross-

correlation algorithm with amplitude equal to 1000 and

repeat the same experiment. The result is given in the
last column of Table 1.

Comparing the last two columns in Table 1, we ob-

serve that the performance of cCross(f) is improved by

selecting a high SNR resonance as a reference. But

cPCA-LR(f) still exhibits the best accuracy, in particular

for quantitation of low SNR spectra.

3.3.3. Frequency shifts smaller than the spectral resolution

We consider here frequency shifts which are smaller

than the spectral resolution Df ð¼ 1
N DtÞ of the given

spectra. Apart from quantitation purposes, removal of

small frequency shifts could play an important prepro-

cessing role for any further processing tasks, such as

classification. Under these conditions, the differences in

alignment precision between cCross(f) and cPCA-LR(f)

become very well pronounced. Fig. 9 shows that
cCross(f) cannot recognize frequency shifts smaller than

Df . It can only move the peaks to positions which are

integer multiples of Df . But cPCA-LR(f) does not have

this limitation.

Using the same simulation procedure described in the

beginning of this section (with Dx ¼ �15 data points)

and repeated for varying amplitude A, we can mathe-

matically demonstrate the advantage of cPCA-LR(f) by
calculating the sample variance of the final central po-

sitions of the resonances after frequency-shift alignment

versus the SNR in Fig. 10. The better the resonances are

aligned, the lower the variance should be.

The advantages of cPCA-LR(f) over cCross(f) are

clearly shown. At all SNR, the variance of the final

central positions of the resonances after frequency cor-

rection by cPCA-LR(f) is lower than that of cCross(f).

Furthermore, as SNR increases, cPCA-LR(f) continu-

ously lowers the variance in contrast to cCross(f) of

which the variance reaches a lower bound at a certain

SNR (20 dB). This is because the limit of frequency

resolution is reached, which implies that the variance of

the final central positions of the resonances after cor-
rection by cCross(f) can no longer be lowered by

increasing the SNR.

Table 1

Comparison in rrmse of 50 amplitudes, as estimated by cPCA-LR(f), cCross1(f) and cCross50(f), where subscript refers to the number of the res-

onance taken as reference

cPCA-LR(f) cCross1(f) cCross50(f)

rrmse of amplitudes of resonances 1 to 25 0.0344 0.0528 0.0356

rrmse of amplitudes of resonances 26 to 50 0.0035 0.0062 0.0036

Fig. 9. Estimated versus true frequency shift variations below spectral

resolution.

Fig. 10. Variances of the final central positions of the resonances after

frequency correction by cPCA-LR(f) and cCross(f) versus SNR.
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Zero-filling is a technique often used to improve dig-
ital resolution. By simply adding zeros at the tail of the

time-domain signal, we can get a smaller Df since N

becomes bigger (Df ¼ 1
N Dt). The following experiment

tries to show how zero-filling can be adopted to increase

the performance of cCross(f). A set of 100 noise-free

(r2
v ¼ 0) single Lorentzian resonances with equal ampli-

tude A ¼ 100, each containing 16 data points and cen-

tered at position 8 with linewidth s ¼ 2 data points, is
generated. Uniformly distributed frequency shifts

(Dx ¼ �1 data point) are added. We apply cCross(f) to

the data set and obtain a result, similarly to the perfor-

mance of cCross(f) in Fig. 9. We then zero-fill each signal

in the data set to 32, 64, 128, 256, and 512 data points

and then observe that the digital resolution of cCross(f)

improves. If the number of data points reaches 512,

cCross(f) visually yields a performance similar to cPCA-
LR(f) in Fig. 9. However, after calculating the sample

variance over 500 repetitions of the experiment, as we did

in Fig. 10, we find out that zero-filling failed to decrease

the variance of the final central positions of the

resonances after frequency-shift alignment, as shown in

Fig. 11. We can conclude from Fig. 11 that zero-filling

cannot improve the accuracy of frequency-shift

alignment algorithms. For small frequency shifts cPCA-
LR(f) always demonstrates better performance than

cCross(f).

3.3.4. Two ways to improve the performance of PCA-

related algorithms

In this section, the simulated data sets generated for

Figs. 6 (respectively, 7) are exactly the same as those

used in Figs. 12 and 14 (respectively, 13 and 15).
One way to improve the performance of PCA-related

algorithms is to add the second-order derivative of the

Taylor series to the linear regression equation. In Figs.

12 and 13, where both algorithms are tested for different

SNR and frequency shifts, the advantage of cPCA2-

LR(f) is obvious. cPCA2-LR(f) clearly yields better re-

sults when the frequency shift is large and the SNR is

low.

The advantages of using fourth-order finite differ-

ences to calculate the derivatives of PCs are shown in
Figs. 14 and 15. At low SNR and large frequency shifts,

we notice the improvement of cPCA-LR(f) by using

fourth-order finite differences instead of first order.

4. In vivo MRSI data of human brain

We have applied the frequency-alignment algorithms
discussed above to an in vivo MRSI data set of the

Fig. 11. Sample variance of the final central positions (expressed in

data points) of the resonances after frequency correction by cPCA-

LR(f) and cCross(f) on zero-filled data sets.

Fig. 12. rrmse of amplitude estimation versus SNR for cPCA-LR(f)

and cPCA2-LR(f).

Fig. 13. rrmse of amplitude estimation versus frequency shift for

cPCA-LR(f) and cPCA2-LR(f).
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human brain, containing 16 � 16 in vivo signals mea-

sured on a 1.5 T Siemens Vision system, using a 2D CSI

sequence with TR/TE 2000/135 ms, slice thickness

10 mm, and localization PRESS box, as shown in Fig.

16. There are 64 voxels inside the white box. Some

voxels contain mainly water, since they are positioned in

the ventricles of the human brain (>99% water). Ven-

tricles can be seen in the middle of the MR image as the
areas with the highest intensity. The dominant residual

water resonances are located at 4.7 ppm. It is observed

that some spectra mainly contain water and some neu-

tron activation analysis (NAA) resonances are greatly

distorted. After removal of all these greatly distorted

spectra, the residual water resonance is first removed in

the remaining spectra by means of HSVD [18]. By cut-

ting the NAA resonance region from these filtered

spectra, we obtain a data set of 21 NAA resonances.
These peaks are located around 2 ppm (see Fig. 17).

We have applied cCross(f) and cPCA-LR(f) to the

data set. The results are shown in Fig. 18. We observe

that frequency shifts of the original data set are suc-

cessfully removed by cCross(f) and cPCA-LR(f) (using

four iterations). We then apply cPCA to check the

variance distribution of the corrected spectra. After

correction by cCross(f), the first principal component
PC1 explains 87.37% of the variance in the complete

data set. After correction by cPCA-LR(f), PC1 explains

88.02% of the variance. This small difference in variance

is due to the low SNR and cannot be improved here by

first applying cCross(f) followed by cPCA-LR(f). The

first six PCs, together with their corresponding nor-

malized eigenvalues (squared singular values), are dis-

played in Fig. 19. Due to remaining lineshape variations,
more than one PC still contains resonance information.

According to Eq. (13) in [14], amplitude estimates of

the NAA resonances can be computed in the presence

of lineshape variations, as the magnitude value of the

sum of weighted scores of the K most informative PCs,

i.e.,

A ¼
XK
j¼1

Sj
XN
i¼1

vij

 !
; ð21Þ

where j:j denotes the magnitude value and Sj ¼ ujri is

the jth score.
If the goal of the analysis is resonance quantitation,

no lineshape corrections are needed [14]. Fig. 20 shows

that the NAA amplitude estimates, computed by cPCA-

LR(f) using two PCs (K ¼ 2 in Eq. (21)), are comparable

(R2 ¼ 0:7) to those computed by a commonly used

nonlinear curve fitting method AMARES [5] (assuming

Gaussian lineshapes), thereby confirming the applica-

bility of cPCA-LR(f) in MRSI. Further increasing the
number of PCs in Eq. (21) no longer improves R2 since

the higher PCs mainly describe noise. Note that an ad-

ditional lineshape correction procedure can further in-

crease the variance contribution in the first PC. This is

currently under investigation.

5. Conclusions

In this paper we have presented new complex-valued

PCA-based methods (cPCA, cPCA-LR(f)) and analyzed

their advantages and limitations for quantifying and

aligning complex-valued single resonances in large MR

spectral sets originating from time series or MRSI ex-

periments. The advantage of PCA-based algorithms lies

in their ability to process the data set as a whole, thereby
improving accuracy of quantitation compared to meth-

ods who process the spectra separately such as HTLS.

Moreover, cPCA-based methods are insensitive to any

Fig. 15. rrmse of amplitude estimation versus frequency shift for

cPCA-LR(f) using 1st and 4th order differences.

Fig. 14. rrmse of amplitude estimation versus SNR for cPCA-LR(f)

using 1st and 4th order differences.
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phase shift and, in addition, the use of the entire com-

plex-valued data set improves their parameter accuracy

compared to that of their real-valued counterparts

which only use the real part of the spectra (rPCA). For

quantitation purposes, cPCA demonstrates good per-

formance in terms of both accuracy and computational

efficiency for MRS data quantitation of spectral data

sets consisting of one single resonance. However, as

soon as the data set contains more than one resonance,

cPCA can no longer be directly applied for quantitation.

In these cases it is still possible to apply cPCA after
filtering out one single resonance at the expense of an

increase in the bias of the amplitude estimate. HTLS-

stack and HTLSsum simultaneously quantify multiple

resonances and perform best if the lineshapes are Lo-

rentzian. The same results hold for unphased sets. In

addition, PCA-based frequency-shift correction is

shown to improve amplitude estimation across large

data sets of frequency-shifted single resonances by using
complex data. Furthermore, it is insensitive to phase

shifts, which makes correction of phase shifts unneces-

sary. The use of higher order derivatives of Taylor series

and higher order finite differences can further improve

the performance of PCA-related frequency-shift algo-

rithms. The cross-correlation algorithm is robust and

Fig. 16. MR image of the human brain and a grid indicating the positioning of the voxels in the MRSI data set. Only the voxels within the box

indicated with the thick white line (8 � 8) contain useful information.

Fig. 17. NAA resonances from the original data set.
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computationally efficient. Furthermore, cross correla-

tion can align arbitrary large frequency shifts. These
properties make it a good candidate as a starting algo-

rithm for automatic frequency alignment. After that,

PCA-related algorithms could be applied to further re-

fine the results (provided the SNR is high enough) since

they are able to correct extremely small shifts, which are

even smaller than the discrete spectral resolution. These

results are confirmed on simulated as well as on in vivo

MRSI data sets. Future research will be focused on
lineshape correction procedures using complex PCA.

Although lineshape corrections are not needed for res-

onance amplitude quantitation [14], these corrections

are recommended when the goal is to end up with a

single signal-related PC, as may be the case prior to

pattern recognition, e.g., for tumor classification.
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PCs) versus AMARES amplitude estimates of 21 NAA resonances.
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